HW06 - Solubility Equilibria

① This is a preview of the published version of the quiz

Started: Oct 21 at 9:55am

Quiz Instructions

Question 1	2 pts
What is the net ionic equation for the reaction between aqueous solutions of Na ₃ PO ₄ and CuSO ₄ ?	
$\bigcirc Cu^{2+} + PO_4^{3-} \longrightarrow CuPO_4$	
$\bigcirc 2Na^+ + SO_4^{2-} \longrightarrow Na_2SO_4$	
No reaction occurs since no precipitate is formed.	
$\bigcirc 3Cu^{2+} + 2PO_4^{3-} \longrightarrow Cu_3(PO_4)_2$	
Question 2	2 pts
What ions are present in solution after aqueous solutions of $Cu(NO_3)_2$ and K_2S are mixed? Assume we mixed stoichiometric equivamounts of both reactants and 100% reaction.	⁄alent
No ions are present as both products form precipitates.	
○ Cu ²⁺ , NO ₃ -, K ⁺ , S ²⁻	
○ K*, NO ₃ -	
○ Cu ²⁺ , S ²⁻	
Question 3	2 pts
Molar solubility is	
the total molarity of the solution.	
equal to the K _{sp} .	
the number of moles that dissolve to give one liter of super-saturated solution.	
the number of moles that dissolve to give one liter of saturated solution.	
Question 4	2 pts
The K _{sp} equation for sodium bicarbonate (NaHCO ₃) should be written as:	
\bigcirc K _{sp} = [Na ⁺][H ⁺][C ⁴⁺][O ² -] ³	

K _{xx} = No.17(1)*(Co.2 ²) Cuestion 5 2 pts Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? (Per*) = 0.8(cr) (R _{xx} = Pix-2*(Cr)) (R _{xx} = Pix-2*(Cr)) (Pix-2*) = (Cr) (Pix-2*) = (Cr) (Pix-2*) =	\bigcirc K _{sp} = [Na ⁺][HCO ₃ ⁻]	
Question 5 2 pts Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? [Pta ²] = 0.9(G1]	$K_{sp} = [Na^+][H^+][CO_3^{2-}]$	
Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? Pb ² = 0.5(C1)	$K_{sp} = [NaH^{2+}][CO_3^{2-}]$	
Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? Pb ² = 0.5(C1)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question 5	2 pts
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true?	
Question 6 2 pts A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04x10 ⁻²⁰ mol/L. What is the value of the solubility-product constant? 1.16 x 10 ⁻⁶⁰ 1.16 x 10 ⁻⁶⁰ 1.63x10 ⁻³⁰ 9.79x10 ⁻³⁰ Question 7 2 pts The value of K ₆₀ for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4x x 10 ⁻⁷ 2.8x x 10 ⁻⁷ 5.3x x 10 ⁻⁴ 7.8 x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K ₈₀ = 2.56x10 ⁻² .	○ [Pb ²⁺] = 0.5[Cl ⁻]	
Question 6 2 pts A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04x10 ⁻²⁰ mol/L. What is the value of the solubility product constant? 1.16 x 10 ⁻⁹⁶ 1.08x10 ⁻⁹⁷ 1.63x10 ⁻³⁹ 9.79x10 ⁻³⁹ Question 7 2 pts The value of K _{8p} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4x 10 ⁻⁷ 2.8x 10 ⁻⁷ 5.3x 10 ⁻⁴ 7.6x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{8p} = 2.56x10 ⁻² .	○ K _{sp} = [Pb ²⁺][Cl ⁻]	
Question 6 2 pts A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04×10 ⁻²⁰ mol/L. What is the value of the solubility-product constant? \[\begin{array}{cccccccccccccccccccccccccccccccccccc	\bigcirc K _{sp} = [Pb ²⁺] ² [Cl ⁻]	
A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04x10 ⁻²⁰ mol/L. What is the value of the solubility-product constant? 1.16 x 10 ⁻⁹⁶ 1.08x10 ⁻⁹⁷ 1.63x10 ⁻³⁹ 9.79x10 ⁻³⁹ Question 7 2 pts The value of K _{ssp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4 x 10 ⁻⁷ 2.8 x 10 ⁻⁷ 5.3 x 10 ⁻⁴ 7.6 x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{ssp} = 2.56x10 ² .	○ [Pb²+] = [Cl*]	
A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04x10 ⁻²⁰ mol/L. What is the value of the solubility-product constant? 1.16 x 10 ⁻⁹⁶ 1.08x10 ⁻⁹⁷ 1.63x10 ⁻³⁹ 9.79x10 ⁻³⁹ Question 7 2 pts The value of K _{ssp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4 x 10 ⁻⁷ 2.8 x 10 ⁻⁷ 5.3 x 10 ⁻⁴ 7.6 x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{ssp} = 2.56x10 ² .	Question 6	2 mta
solubility-product constant?	Question 6	2 pts
$ \begin{array}{c c} 1.08x10^{-97} \\ \hline 0.1.63x10^{-39} \\ \hline 0.9.79x10^{-39} \\ \hline $		f the
$ \begin{array}{ c c c }\hline 1.63x10^{-39} \\ \hline 9.79x10^{-39} \\ \hline $	○ 1.16 x 10 ⁻⁹⁵	
Question 7 2 pts The value of K _{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4 x 10 ⁻⁷ 2.8 x 10 ⁻⁷ 5.3 x 10 ⁻⁴ 7.6 x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{sp} = 2.56x10 ² .	○ 1.08x10 ⁻⁹⁷	
Question 7 2 pts The value of K _{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4x10 ⁻⁷ 2.8x10 ⁻⁷ 5.3x10 ⁻⁴ 7.6x10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{sp} = 2.56x10 ² .	○ 1.63x10 ⁻³⁹	
The value of K_{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? $\begin{array}{c} 1.4 \times 10^{-7} \\ 2.8 \times 10^{-7} \\ 5.3 \times 10^{-4} \\ 7.6 \times 10^{-7} \end{array}$ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if $K_{sp} = 2.56 \times 10^{2}$.	○ 9.79x10 ⁻³⁹	
The value of K_{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? $\begin{array}{c} 1.4 \times 10^{-7} \\ 2.8 \times 10^{-7} \\ 5.3 \times 10^{-4} \\ 7.6 \times 10^{-7} \end{array}$ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if $K_{sp} = 2.56 \times 10^{2}$.	Question 7	2 nts
$ \begin{array}{c c} 1.4 \times 10^{-7} \\ \hline 2.8 \times 10^{-7} \\ \hline 5.3 \times 10^{-4} \\ \hline 7.6 \times 10^{-7} \\ \hline \\ $	Question /	2 pts
	The value of K _{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter?	
$\begin{array}{c} 5.3 \times 10^{-4} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	○ 1.4 x 10 ⁻⁷	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	○ 2.8 x 10 ⁻⁷	
Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB_2 if $K_{sp} = 2.56 \times 10^2$. \bigcirc 1 M	○ 5.3 x 10 ⁻⁴	
Determine the molar solubility of some salt with the generic formula AB_2 if $K_{sp} = 2.56x10^2$.	○ 7.6 x 10 ⁻⁷	
Determine the molar solubility of some salt with the generic formula AB_2 if $K_{sp} = 2.56x10^2$.	Question 8	2 nte
○ 1 M		_ pt3
	Determine the molar solubility of some salt with the generic formula AB_2 if $K_{sp} = 2.56 \times 10^2$.	
○ 10 M	○ 1 M	
	○ 10 M	

O.1 M		
○ 4 M		
Question 9		2 pts
Rank the following	ng salts from least to most molar solubility:	
Bil	$K_{sp} = 7.7 \times 10^{-19}$	
Cd ₃ (AsO ₄) ₂	$K_{sp} = 2.2 \times 10^{-33}$	
AIPO ₄	$K_{sp} = 9.8 \times 10^{-21}$	
CaSO ₄	$K_{\rm sp} = 4.9 \times 10^{-5}$	
	Tap	
Od ₃ (AsO ₄) ₂ <	Bil < AIPO ₄ < CaSO ₄	
○ Cd ₃ (AsO ₄) ₂ <	AIPO ₄ < Bil < CaSO ₄	
○ CaSO ₄ < Bil <	$AIPO_4 < Cd_3(AsO_4)_2$	
○ AlPO ₄ < Bil <	$Cd_3(AsO_4)_2 < CaSO_4$	
Question 10		3 pts
A hypothetical c	ompound MX_3 has a molar solubility of 0.00562 M. What is the value of K_{sp} for MX_3 ?	
2.99 x 10 ⁻⁹		
3.16 x 10 ⁻⁵		
2.69 x 10 ⁻⁸		
9.48 x 10 ⁻⁵		
Question 11		2 pts
Determine if a p	recipitate will form when $0.96g \text{ Na}_2\text{CO}_3$ is combined with $0.2g \text{ BaBr}_2$ in a 10L solution. (For BaCO ₃ , K_{sp} = 2	⁹ .8x10 ⁻⁹).
○ BaCO ₃ precipi	itates	
O It is impossible	e to know if any BaCO ₃ will precipitate with the information given.	
○ BaBr ₂ will rem	ain in solid form as it is insoluble in water.	
○ BaCO ₃ does n	not precipitate	
Question 12		2 pts
CaSO ₄ has a K _s	$_{\rm p}$ = 3x10 ⁻⁵ . In which of the following would CaSO ₄ be the most soluble?	

○ 0.5 M K ₂ SO ₄ (aq)	
pure water	
CaSO ₄ would have the same solubility in all three of these solutions	
1.0 M CaCl ₂ (aq)	
Question 13	2 pts
A solution of AgI contains 1.9 M Ag $^+$. K _{sp} of AgI is 8.3 x 10 $^{-17}$. What is the maximum I $^-$ concentration that can exist in this so	olution?
○ 4.4x10 ⁻¹⁷ M	
○ 1.9 M	
○ 1.6x10 ⁻¹⁶ M	
○ 8.3x10 ⁻¹⁷ M	
Question 14	3 pts
What would be the molar solubility of Li_3PO_4 (K_{sp} = 2.37 x 10 ⁻⁴) in a 1M LiCl solution?	
○ 5.44 x 10 ⁻²	
○ 1.54 x 10 ⁻²	
○ 1.24 x 10 ⁻¹	
\bigcirc 2.37 x 10 ⁻⁴	
○ 2.37 x 10 ⁻⁴	
○ 2.37 x 10 ⁻⁴	