HW06 - Solubility Equilibria ① This is a preview of the published version of the quiz Started: Oct 21 at 9:55am ## **Quiz Instructions** | Question 1 | 2 pts | |--|--------| | What is the net ionic equation for the reaction between aqueous solutions of Na ₃ PO ₄ and CuSO ₄ ? | | | $\bigcirc Cu^{2+} + PO_4^{3-} \longrightarrow CuPO_4$ | | | $\bigcirc 2Na^+ + SO_4^{2-} \longrightarrow Na_2SO_4$ | | | No reaction occurs since no precipitate is formed. | | | $\bigcirc 3Cu^{2+} + 2PO_4^{3-} \longrightarrow Cu_3(PO_4)_2$ | | | | | | Question 2 | 2 pts | | What ions are present in solution after aqueous solutions of $Cu(NO_3)_2$ and K_2S are mixed? Assume we mixed stoichiometric equivamounts of both reactants and 100% reaction. | ⁄alent | | No ions are present as both products form precipitates. | | | ○ Cu ²⁺ , NO ₃ -, K ⁺ , S ²⁻ | | | ○ K*, NO ₃ - | | | ○ Cu ²⁺ , S ²⁻ | | | | | | Question 3 | 2 pts | | Molar solubility is | | | the total molarity of the solution. | | | equal to the K _{sp} . | | | the number of moles that dissolve to give one liter of super-saturated solution. | | | the number of moles that dissolve to give one liter of saturated solution. | | | | | | Question 4 | 2 pts | | The K _{sp} equation for sodium bicarbonate (NaHCO ₃) should be written as: | | | \bigcirc K _{sp} = [Na ⁺][H ⁺][C ⁴⁺][O ² -] ³ | | | K _{xx} = No.17(1)*(Co.2 ²) Cuestion 5 2 pts Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? (Per*) = 0.8(cr) (R _{xx} = Pix-2*(Cr)) (R _{xx} = Pix-2*(Cr)) (Pix-2*) = (Cr) | \bigcirc K _{sp} = [Na ⁺][HCO ₃ ⁻] | | |---|--|-------| | Question 5 2 pts Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? [Pta ²] = 0.9(G1] | $K_{sp} = [Na^+][H^+][CO_3^{2-}]$ | | | Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? Pb ² = 0.5(C1) | $K_{sp} = [NaH^{2+}][CO_3^{2-}]$ | | | Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? Pb ² = 0.5(C1) | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Question 5 | 2 pts | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Pure water is saturated with PbCl ₂ . In this saturated solution, which of the following is true? | | | Question 6 2 pts A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04x10 ⁻²⁰ mol/L. What is the value of the solubility-product constant? 1.16 x 10 ⁻⁶⁰ 1.16 x 10 ⁻⁶⁰ 1.63x10 ⁻³⁰ 9.79x10 ⁻³⁰ Question 7 2 pts The value of K ₆₀ for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4x x 10 ⁻⁷ 2.8x x 10 ⁻⁷ 5.3x x 10 ⁻⁴ 7.8 x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K ₈₀ = 2.56x10 ⁻² . | ○ [Pb ²⁺] = 0.5[Cl ⁻] | | | Question 6 2 pts A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04x10 ⁻²⁰ mol/L. What is the value of the solubility product constant? 1.16 x 10 ⁻⁹⁶ 1.08x10 ⁻⁹⁷ 1.63x10 ⁻³⁹ 9.79x10 ⁻³⁹ Question 7 2 pts The value of K _{8p} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4x 10 ⁻⁷ 2.8x 10 ⁻⁷ 5.3x 10 ⁻⁴ 7.6x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{8p} = 2.56x10 ⁻² . | ○ K _{sp} = [Pb ²⁺][Cl ⁻] | | | Question 6 2 pts A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04×10 ⁻²⁰ mol/L. What is the value of the solubility-product constant? \[\begin{array}{cccccccccccccccccccccccccccccccccccc | \bigcirc K _{sp} = [Pb ²⁺] ² [Cl ⁻] | | | A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04x10 ⁻²⁰ mol/L. What is the value of the solubility-product constant? 1.16 x 10 ⁻⁹⁶ 1.08x10 ⁻⁹⁷ 1.63x10 ⁻³⁹ 9.79x10 ⁻³⁹ Question 7 2 pts The value of K _{ssp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4 x 10 ⁻⁷ 2.8 x 10 ⁻⁷ 5.3 x 10 ⁻⁴ 7.6 x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{ssp} = 2.56x10 ² . | ○ [Pb²+] = [Cl*] | | | A hypothetical ionic substance T ₃ U ₂ ionizes to form T ²⁺ and U ³⁻ ions. The solubility of T ₃ U ₂ is 4.04x10 ⁻²⁰ mol/L. What is the value of the solubility-product constant? 1.16 x 10 ⁻⁹⁶ 1.08x10 ⁻⁹⁷ 1.63x10 ⁻³⁹ 9.79x10 ⁻³⁹ Question 7 2 pts The value of K _{ssp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4 x 10 ⁻⁷ 2.8 x 10 ⁻⁷ 5.3 x 10 ⁻⁴ 7.6 x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{ssp} = 2.56x10 ² . | Question 6 | 2 mta | | solubility-product constant? | Question 6 | 2 pts | | $ \begin{array}{c c} 1.08x10^{-97} \\ \hline 0.1.63x10^{-39} \\ \hline 0.9.79x10^{-39} \\ \hline $ | | f the | | $ \begin{array}{ c c c }\hline 1.63x10^{-39} \\ \hline 9.79x10^{-39} \\ \hline $ | ○ 1.16 x 10 ⁻⁹⁵ | | | Question 7 2 pts The value of K _{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4 x 10 ⁻⁷ 2.8 x 10 ⁻⁷ 5.3 x 10 ⁻⁴ 7.6 x 10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{sp} = 2.56x10 ² . | ○ 1.08x10 ⁻⁹⁷ | | | Question 7 2 pts The value of K _{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? 1.4x10 ⁻⁷ 2.8x10 ⁻⁷ 5.3x10 ⁻⁴ 7.6x10 ⁻⁷ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if K _{sp} = 2.56x10 ² . | ○ 1.63x10 ⁻³⁹ | | | The value of K_{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? $\begin{array}{c} 1.4 \times 10^{-7} \\ 2.8 \times 10^{-7} \\ 5.3 \times 10^{-4} \\ 7.6 \times 10^{-7} \end{array}$ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if $K_{sp} = 2.56 \times 10^{2}$. | ○ 9.79x10 ⁻³⁹ | | | The value of K_{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? $\begin{array}{c} 1.4 \times 10^{-7} \\ 2.8 \times 10^{-7} \\ 5.3 \times 10^{-4} \\ 7.6 \times 10^{-7} \end{array}$ Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB ₂ if $K_{sp} = 2.56 \times 10^{2}$. | Question 7 | 2 nts | | $ \begin{array}{c c} 1.4 \times 10^{-7} \\ \hline 2.8 \times 10^{-7} \\ \hline 5.3 \times 10^{-4} \\ \hline 7.6 \times 10^{-7} \\ \hline $ | Question / | 2 pts | | | The value of K _{sp} for SrSO ₄ is 2.8x10 ⁻⁷ . What is the solubility of SrSO ₄ in moles per liter? | | | $\begin{array}{c} 5.3 \times 10^{-4} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | ○ 1.4 x 10 ⁻⁷ | | | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | ○ 2.8 x 10 ⁻⁷ | | | Question 8 2 pts Determine the molar solubility of some salt with the generic formula AB_2 if $K_{sp} = 2.56 \times 10^2$. \bigcirc 1 M | ○ 5.3 x 10 ⁻⁴ | | | Determine the molar solubility of some salt with the generic formula AB_2 if $K_{sp} = 2.56x10^2$. | ○ 7.6 x 10 ⁻⁷ | | | Determine the molar solubility of some salt with the generic formula AB_2 if $K_{sp} = 2.56x10^2$. | Question 8 | 2 nte | | ○ 1 M | | _ pt3 | | | Determine the molar solubility of some salt with the generic formula AB_2 if $K_{sp} = 2.56 \times 10^2$. | | | ○ 10 M | ○ 1 M | | | | ○ 10 M | | | O.1 M | | | |--|--|-------------------------------------| | ○ 4 M | | | | | | | | Question 9 | | 2 pts | | Rank the following | ng salts from least to most molar solubility: | | | Bil | $K_{sp} = 7.7 \times 10^{-19}$ | | | Cd ₃ (AsO ₄) ₂ | $K_{sp} = 2.2 \times 10^{-33}$ | | | AIPO ₄ | $K_{sp} = 9.8 \times 10^{-21}$ | | | CaSO ₄ | $K_{\rm sp} = 4.9 \times 10^{-5}$ | | | | Tap | | | Od ₃ (AsO ₄) ₂ < | Bil < AIPO ₄ < CaSO ₄ | | | ○ Cd ₃ (AsO ₄) ₂ < | AIPO ₄ < Bil < CaSO ₄ | | | ○ CaSO ₄ < Bil < | $AIPO_4 < Cd_3(AsO_4)_2$ | | | ○ AlPO ₄ < Bil < | $Cd_3(AsO_4)_2 < CaSO_4$ | | | | | | | Question 10 | | 3 pts | | | | | | A hypothetical c | ompound MX_3 has a molar solubility of 0.00562 M. What is the value of K_{sp} for MX_3 ? | | | 2.99 x 10 ⁻⁹ | | | | 3.16 x 10 ⁻⁵ | | | | 2.69 x 10 ⁻⁸ | | | | 9.48 x 10 ⁻⁵ | | | | | | | | Question 11 | | 2 pts | | | | | | Determine if a p | recipitate will form when $0.96g \text{ Na}_2\text{CO}_3$ is combined with $0.2g \text{ BaBr}_2$ in a 10L solution. (For BaCO ₃ , K_{sp} = 2 | ⁹ .8x10 ⁻⁹). | | ○ BaCO ₃ precipi | itates | | | O It is impossible | e to know if any BaCO ₃ will precipitate with the information given. | | | ○ BaBr ₂ will rem | ain in solid form as it is insoluble in water. | | | ○ BaCO ₃ does n | not precipitate | | | | | | | Question 12 | | 2 pts | | CaSO ₄ has a K _s | $_{\rm p}$ = 3x10 ⁻⁵ . In which of the following would CaSO ₄ be the most soluble? | | | ○ 0.5 M K ₂ SO ₄ (aq) | | |---|----------| | pure water | | | CaSO ₄ would have the same solubility in all three of these solutions | | | 1.0 M CaCl ₂ (aq) | | | | | | Question 13 | 2 pts | | A solution of AgI contains 1.9 M Ag $^+$. K _{sp} of AgI is 8.3 x 10 $^{-17}$. What is the maximum I $^-$ concentration that can exist in this so | olution? | | ○ 4.4x10 ⁻¹⁷ M | | | ○ 1.9 M | | | ○ 1.6x10 ⁻¹⁶ M | | | ○ 8.3x10 ⁻¹⁷ M | | | | | | Question 14 | 3 pts | | What would be the molar solubility of Li_3PO_4 (K_{sp} = 2.37 x 10 ⁻⁴) in a 1M LiCl solution? | | | ○ 5.44 x 10 ⁻² | | | ○ 1.54 x 10 ⁻² | | | ○ 1.24 x 10 ⁻¹ | | | | | | \bigcirc 2.37 x 10 ⁻⁴ | | | ○ 2.37 x 10 ⁻⁴ | | | ○ 2.37 x 10 ⁻⁴ | |